

Anastasios Chatzithomaoglou (achatz@forthnet.gr)

IP Engineering – Forthnet

17-10-2013

High Level Design

Terminology

The usual jargon

LE (Local Exchange)

□ The place where subscriber lines are terminated per geo-area

POP (Point of Presence)

□ The place where Aggregation & Edge Routers can be installed

Access Router

□ The L2/L3 device that connects all L2 access devices to the rest of the network

Aggregation Router

□ The L2/L3 device that connects multiple Access Routers to multiple Edge Routers

□ Multiple levels of aggregation can exist

Edge Router

□ The L3 device on the Edge Network that offers the final IP service to the subscriber (i.e. BRAS/BNG)

Services

<u>Business</u>

Residential

L2 Services EPL/EVPL
VPN/ELAN
NNI

L3 Services

Internet
Voice
VPN
NNI

Access Network in 2006

forthnet

Access Network in 2008

forthnet

Access Network in 2010

forthnet

Access Network in 2011

forthnet

Access Network in 2012

forthnet

Old Design

Issues with old design

- Legacy SDH STM-16 transport
- □ Large L2 domains (macs/broadcasts/loops)
- Limited vlans (even with QinQ)
- Max 2x1G capacity
- □ Active/Standby Redundancy (based on STP)
- Limited mac-address space

Requirements of new Design

General Requirements of new Design

- □ n x 10G only (40G/100G in the future)
- □ L2CP transparency (especially for business services)
- **QoS** bits transparency
- □ Jumbo frames (> 9000 bytes)
- □ Active/Active Redundancy whenever possible
- □ No loss (< 50 ms) upon any Direct Link/Node failure
- □ Minimal loss (< 1 sec) upon any Remote Link/Node failure
- □ No need for very large scalability
- □ As much formulation/standardization as possible

L2 vs L3 & Transport

L2 HW Solutions

L3 HW Solutions

Multiply 1G uplink of Access Switch X

Install 10G Access Switch

Install 10G Access Router 🗸

Transport Solutions

Upgrade SDH to STM-64 X

Replace SDH with WDM 💙

(12)

Thinking about L2

G.8032v2

- **T**oo cumbersome
- Extra vlans per LE
- Limited public exposure

TRILL & SPB

- □ Mostly focused on DC (not applicable for Carrier Ethernet)
- □ Limited OAM functionality (under development)
- □ Non-existent support by CE products

Vendor Proprietary Solutions

- Might do the job quite well
- Dessible vendor lock-in
- □ Prefer vendor agnostic solutions, unless no such solution exists

Final Decision

- □ Move toward unified network architecture based on IP/MPLS
- □ Expand L3 deployment from Core/Edge to Aggregation/Access

Thinking about L3

IGP + optimizations

- Simple and works in every case
- Slow convergence (hello/timer tuning might fix it)

MPLS TE/FRR

- □ Too complex (although used in other parts of the network for TE)
- □ No easy way for automation (affinity/manual)
- Explicit paths for inter-area tunnels

(r)LFA

- Plug & Play (unless IETF blows it up)
- □ Some topologies not covered 100%
- □ Micro-loops are possible

BFD

Use to detect losses due to virtual ifs (otherwise it would be detected at PHY, due to FO)
 SW-based in some platforms

EoMPLS/VPLS

□ A/A and A/S Pseudowires to transfer L2 services from Access to Aggregation

PW-HE

- □ Remove completely Vlans/L2 from Aggregation
- More Pseudowires from Access to Edge

Old design

New design

Old Design vs New Design

<u>Old Design</u>

New Design

- □ Legacy SDH STM-16 transport
- Large L2 domains
- Limited vlans (even with QinQ)
- Max 2x1G capacity
- Redundancy based on SDH/STP
- Limited mac-address space

- Direct FO, no SDH
- Limited L2 domains
 - Many PWs
- □ Max 2x10G capacity
- Redundancy based on IP
 - x10 mac-address space

Access Network in 2013

nova

forthnet

Low Level Design

IGP

IGP Details

- □ IPv4 10.X.Y.Z addressing (no IPv6 for LDP yet)
- □ OSPF (already used in the network)
- □ Area 0 for aggregation
- □ Area 0.X.Y.Z for all access rings between POPs X & Y
- □ Multi-area adjacency (if needed for intra-area vs inter-area)
- □ No external prefixes, no ASBRs
- Every adjacency configured as point-to-point
- BFD tx/rx 100 multiplier 3 (buggy)
- □ LFA support only for Loopbacks (buggy)

Pseudowires

PW Details

- □ Numbering based on VLAN-NUMBER-SERVICE (i.e. 3456011100)
- □ MTU > 9000
- □ Control Word enabled (avoid 4/6 mac issue in LB)
- □ Active/Standby if attached to EFP/BD
- □ Active/Active if attached to VFI
- □ Split-Horizon disabled if > 2 IPoE Access PWs from same LE and no Access BD

Management

Access Router Management

- Different Loopback for Management
- □ Recursive Static Default Route pointing to an Aggregation Router
- Double Default Route through IGP (with different metrics)
- □ Global => VRF in Aggregation Router towards Management Network
- OOB over old EoSDH when possible

Note: Mgmt VRF in Access Routers also under consideration

Load-Balancing

<u>Issue</u>

PWs between Access and Aggregation transport large volumes of PPPoE traffic, especially in the downstream direction. Need to make sure that they are split over multiple links.

Solution

Improve granularity on the hashing of traffic running over PWs by introducing one or more additional labels Intermediate nodes need only to make an ECMP choice based on a hash of the MPLS label stack

Packet ordering must be preserved only within the context of each individual transported IP/Eth flow

The requirement to loadbalance over multiple PSN paths occurs when the ratio between the access PW utilisation and the PSN's core link capacity is large (e.g., >= 1:10)

Access Network in 2013 – Dual-Attached LEs

Access Network in 2013 – Dual-Homed LEs

Access Network in 2013 – Dual-Attached/Homed LEs

Migration

Migration Steps

- Move from aggregation towards access
- Edge doesn't need to be changed
- New aggregation routers between old aggregation switches and edge routers
- **Extra PWs between old and new aggregation devices**
- Use parallel circuits to change from L2 to L3
- □ Many maintenance windows, many bugs

Access Network in 2013 – Zoom Out

Access Network in 2013 – Edge Cloud

forthnet

Poor Man's SDN

Things to check out

Future things to evaluate

Multicast efficiency (draft-ietf-l2vpn-vpls-mcast)

- EVPN (draft-ietf-l2vpn-evpn)
- Labels in BGP (RFC 3107)
- □ VPLS Auto-discovery/Signaling with BGP (RFC 4761)
- □ TDM services (with or w/o MPLS-TP)
- Segment Routing (draft-filsfils-rtgwg-segment-routing)
- □ Enhanced ECMP and Large FAT (draft-yong-pwe3-enhance-ecmp-lfat)
- MRT-FRR (draft-ietf-rtgwg-mrt-frr-architecture)

The End

Thank you!

Q & A

