IP fragmentation attack on DNS

Original work by Amir Herzberg & Haya Shulman

Tomas Hlavacek • tomas.hlavacek@nic.cz • RIPE 67, 16.10.2013
IP fragmentation attack

- Amir Herzberg & Haya Shulman paper
 Fragmentation Considered Poisonous

- Two existing PoC:
 - Tomáš Hlaváček & Ondřej Mikle, CZ.NIC Labs
 - Brian Dickson, VeriSign Labs

- Relatively low technical complexity but a lot of preconditions
The new attack vector: Fragments

- Attack on UDP
- Exploits IP fragmentation & reassembly
- Off-path modification of packets
- Relies on 16-bit IP ID number in IP headers
- IP ID generation by counter helps
- Fights IP reassembly cache limits
IP fragmentation attack on DNS

- Cache-poisoning attack on resolvers
- Reduces entropy from 32 bits (source port + DNS ID) to 16 bits (IP ID)
- ... because UDP header and beginning of DNS data stays in the 1st fragment
- Attacker modifies the 2nd fragment (authority and additional sections)
IP frag attack on DNS types

- Two types so far:
 - 1) Convincing authoritative server to fragment replies for real domain by spoofed ICMPs
 - 2) Registering specially forged zone which generates responses over 1500 B
Triggering fragmentation – 1st type

- ICMP destination unreachable, frag. needed but DF bit set (type=3, code=4)
- Spoofing of ICMP (BCP38 is not a problem, firewalls are)
- Linux accepts signaled MTU into routing cache for 10 mins
- Linux minimum MTU = 552 B
1st type big picture

Authoritative server

Caching resolver
1st type big picture

ICMP dest. unreachable, spoofed, IP header in ICMP data has dst IP of the caching resolver
ICMP dest. unreachable, spoofed, IP header in ICMP data has dst IP of the caching resolver

Spoofed 2nd response fragment
1st type big picture

ICMP dest. unreachable, spoofed, IP header in ICMP data has dst IP of the caching resolver

Authoritative server

Query

Spoofed 2nd response fragment

Caching resolver
1st type big picture

ICMP dest. unreachable, spoofed, IP header in ICMP data has dst IP of the caching resolver

Query

Spoofed 2nd response fragment

Query
1st type big picture

ICMP dest. unreachable, spoofed, IP header in ICMP data has dst IP of the caching resolver

Authoritative server

Query

Spoofed 2nd response fragment

Caching resolver

1st response fragment
1st type big picture

ICMP dest. unreachable, spoofed, IP header in ICMP data has dst IP of the caching resolver

Authoritative server

Query

Spoofed 2nd response fragment

Caching resolver

1st response fragment

2nd response fragment
Effects of ICMP spoofing

root@authoritative_server:/# ip route show cache

...
77.243.16.81 from 195.226.217.5 via 217.31.48.17 dev eth0
 cache ipid 0xe8a1

62.109.128.22 from 195.226.217.5 via 217.31.48.17 dev eth0
 cache expires 576sec ipid 0x6ef3 mtu 552 rtt 4ms rttvar 4ms cwnd 10

63.249.32.21 from 195.226.217.5 via 217.31.48.17 dev eth0
 cache ipid 0xa256
Response of the authoritative server

; EDNS: version: 0, flags: do; udp: 4096

;; QUESTION SECTION:
;aa.aaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaaaaaaaaaaaaaaaaaaaaaaaaaa.aaaaaaaaaaaaaaaaaaaaaaaaa.aaaaaaaaaaaaaaaaaaaaaaaaa.aaaaaaa
aaa.aaaaaaaaa
aa.ad.example.cz. IN A

;; AUTHORITY SECTION:
ad.example.cz. 360 IN NS ad-ns1.example.cz.
ad.example.cz. 360 IN NS ad-ns2.example.cz.
ad.example.cz. 360 IN NSEC ad-ns1.example.cz. NS ...

;; ADDITIONAL SECTION:
ad-ns1.example.cz. 360 IN A 217.31.49.71
ad-ns1.example.cz. 360 IN RRSIG A 5 3 360 ...
ad-ns2.example.cz. 360 IN A 217.31.49.70
ad-ns2.example.cz. 360 IN RRSIG A 5 3 360 ...

1st and 2nd fragment border
Response in the resolver log

; EDNS: version: 0, flags: do; udp: 4096
;; QUESTION SECTION:
;aa.aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaa.aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaa.aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa
aaa.aaaaaaaaaaaaaaaaaaaaaaaa
aa.ad.example.cz. IN A

;; AUTHORITY SECTION:
ad.example.cz. 360 IN NS ad-ns1.example.cz.
ad.example.cz. 360 IN NS ad-ns2.example.cz.
ad.example.cz. 360 IN NSEC ad-ns1.example.cz. NS ...

;; ADDITIONAL SECTION:
ad-ns1.example.cz. 360 IN A 217.31.49.71
ad-ns1.example.cz. 360 IN RRSIG A 5 3 360 ...
ad-ns2.example.cz. 360 IN A 62.109.128.20
ad-ns2.example.cz. 360 IN RRSIG A 5 3 360 ...

1st and 2nd fragment border
UDP checksum fixup
Technical challenges in PoC

- ICMP packet forgery (easy)
- Selecting vulnerable zone (medium)
- Forging fragments, fixing UDP checksums (hard)
- Inserting into network (depends on local admin's paranoia)
- IP reassembly queue size = 64 @ Linux (needs further work)
- RR-set order randomization (annoyance)
- Label compression (not a problem)
- Fragment arrival order (potentially breaks the attack)
Forged packet acceptance

- Bailiwick rules
- Generally low level of trust in RR from additional section
- Gradually stronger rules in BIND since ~2003
- Unknown (most likely strict) rules in Unbound
PoC & tricks

- This (1st type) attack worked in lab!
- IP ID known to attacker
- No firewalls, no conntrack
- Non-default IP reassembly queue settings
- 1 out of 3 trials succeeded (due to RR-set randomization and timing)
2nd type attack

- Forge zone with specific NS RRs:
 - Add target NS (and glue) to poison
 - Forge zone to produce long referral responses (N x \sim 250 B NS RR)
- Register the domain at the lowest possible level (2nd level zone)
Malicious zone in ccTLD

;poisonovacizona.cz. IN NS
;; AUTHORITY SECTION:
poisonovacizona.cz. 18000 IN NS eaa.
kaa.
quaa.
waa.
poisonovacizona.cz.
...
poisonovacizona.cz. 18000 IN NS ns2.ignum.cz.
;; ADDITIONAL SECTION:
ns2.ignum.cz. 18000 IN A 217.31.48.201
eaa.
kaa.
quaa.
waa.
poisonovacizona.cz. 18000 IN A 217.31.48.1
...
;; MSG SIZE rcvd: 1949
Attack through the malicious zone

- The zone produces fragmented referral replies
- The zone is perfectly valid
- ... even though it contains weird NS RR
- It contains target NS RR of a high-profile authoritative server
- Glue for the target NS is exposed in the 2nd fragment
Defenses

- DNSSEC now!

Workarounds

- 1st type: Ignore ICMP type=3, code=4
- 2nd type: limit response size & set EDNS0 buffer size to your MTU value (on both sides – authoritative as well as recursive)
Demo session

- If you are interested in live demo...

- ... suggested meeting in terminal room at 13:30

- ... or catch me in lobby or on mail/Jabber

- ~½ hour for setup and launching the attack.
Thank You

Tomas Hlavacek • tomas.hlavacek@nic.cz • RIPE 67, 16.10.2013