

Over coming traditional network limitations with open source

Modern datacenters adoption of new technologies

- application demands push protocol scale
- physical (100Gbps distance, speed of light)
- administrative (layer 8) resources

"SDN", OpenFlow, network virtualization, configuration management, and many other efforts are throwing a wrench against traditional networking practices

Traditional networking

Typical Network Operating System (switch and/or router)

- Structured as "black box"
 - CLI != API
- Closed development model
 - Diagnostics "under the hood" difficult to see
- Complicated management tool chains
 - SNMP MIB's... hell
 - Screen scraping... regex's change on OS version
 - Arcane / low adoption scripting languages
- Not geared for rapid spin-up / spin-down of resources

Modern datacenter network roots

IP-based networks

Limited adoption - large scale L2, InfiniBand, ATM

Configuration management / automation

- Monitoring
- Policy enforcement
- Rapid spin-up / spin-down

New breed of applications

East-West vs. North-South flows

Linux?

- Dominate server platform
 - Well established ecosystem of distributions, best practices, knowledge
 - Open well documented API, large selection of language interpreters
 - Excellent networking support IPv6, NAT's, QoS, accounting
- Vibrant community which fuels rapid innovation
- Heavy automation frameworks
 - Open nature has facilitated huge management tool-chain progress

In other words...

GNU/Linux is a great fit as the OS for not just servers but also routers and switches in the modern data center

Operating System Evolution

Monolithic OS

No real OS, while loop

Proprietary routing And switching stack

Eg: IOS, CatOS

3rd Real-time OS

Embedded OS with process and memory mgmt

Proprietary routing And switching stack

Eg: ION

Linux-based OS

Linux as the embedded OS: process and memory mgmt

Proprietary routing And switching stack

Eg: NX-OS, EOS

Linux OS

Linux as
Network OS:
Native routing
and switching

Cumulus Linux

What advantages does this provide?

Open Source L2 & L3

Routing

- Quagga (many forks), BIRD, Xorp
 - OSPF unnumbered
 - BGP next-hop self
 - Looking glass

Bridging

Kernel STP, MSTPD (BDPU Guard, Bridge Assurance)

Discovery

LLDAP, Open-LLDP, LLDPD (many implement CDP, FDP, etc.)

L8 Management

Traditional tools

- TCL limited adoption
- XSLT single vendor, mostly supplied tools
- Except Rancid base, very popular

"DevOps" tools have major adoption

- Cfengine, Puppet, Chef, Ansible
- Salt, Trigger, ... literally new tools every quarter
- Large diverse communities (conferences, books, professional services)
- Nirvana = same tool chain for compute AND network environments

"NetDevOps" re-born again

- NetDev abstraction layer in puppet, chef, & ansible
- Possible "SDN" pill which CCIE's can appreciate?

Cumulus networks

Monitoring

- Traditional tools
 - SNMP Where can I get a copy of the MIB?
 - MRTG
 - Cacti
- Newer tools (again, compute folks learned long ago SNMP was a fail)
 - CollectD
 - Diamond
 - Graphite
 - Sensu
- Deploy agents directly on the network devices, pushing stats and state, instead of polling

Cumulus Networks contributions

ONIE

Open Source boot loader for network devices

Prescriptive Topology Daemon

Data centre cable verification using LLDP

Quagga

Actively submitting patches, major bugfixes

MSTP

Bridge assurance, various bugfixes

ONIE - Open Network Install Environment

Problem:

•Switches need the equivalent of a boot loader to allow disaggregation of hardware from operating system

Solution: ONIE, installer environment to address open hardware ecosystem

- •A small, Linux based operating system that comes pre-installed on bare metal switches
- •Provides an environment for network OS installers (Network operating system neutral)

ONIE - Open Network Install Environment

- Zero-touch install of operating system on industrystandard gear running the Open Network Install Environment (ONIE)
 - Industry standard gear comes with ONIE
 - ONIE provides the installer environment for auto-installation of network operating system
 - ONIE discovers the operating system through USB, DHCP,..., and Cumulus Linux gets downloaded and installed on the system

cumulus networks

Goal: Operational simplicity, reduced Operator errors

- Verify connectivity per cabling plan
- Bring up routing adjacency only if cabling test passes
- Selective actions on link up

How? Network topology specified via DOT language and distributed to all nodes

- Each node determines its relevant information
- Use LLDP to verify connectivity
- Logs errors
- Daemon executes a set of scripts on topology pass and a different set of scripts on topology fail

Topology

Topology graph:

Topology


```
digraph G {
  //spine0's connections
  spine0:swp1 -> leaf0:swp1;
  spine0:swp2 -> leaf1:swp1;
  //spine1's connections
  spine1:swp1 -> leaf0:swp2;
  spine1:swp2 -> leaf1:swp2;
  //leaf0's connections
  leaf0:swp1 -> spine0:swp1;
  leaf0:swp2 -> spine1:swp1;
  //leaf1's connections
  leaf1:swp1 -> spine0:swp2;
  leaf1:swp2 -> spine1:swp2;
```


- Written in C and Python
- Communicates with LLDPD (based on <u>https://github.com/vincentbernat/lldpd</u>)

cumulus@S1:~# ptmctl				
Port	Status	Expected Nbr	Observed Nbr	Last Updated
swp1	pass	M1:swp3	M1:swp3	17h:39m:21s
swp2	pass	M2:swp3	M2:swp3	17h:39m:21s
swp3	pass	M3:swp3	M3:swp3	17h:39m:21s
swp4	pass	M4:swp3	M4:swp3	17h:39m:21s
Swp5	fail	M5:swp3	M4:swp4	17h:39m:21s
cumulus@S1:~#				

Interoperability

- Any device running an LLDP daemon
- Routing adjacencies can be brought by the device running PTM.

```
digraph G {;
    S1:swp1 -> S2:swp1;
    S1:swp2 -> S2:swp2;
    S1:swp3 -> "procurve1.lab":21;
    S1:swp4 -> "procurve1.lab":22;
    S1:swp5 -> "cisco1.lab":"GigabitEthernet0/1";
    S1:swp6 -> "jmx480":"xe-0/0/0";
    S1:swp7 -> webserver1:eth0;
    S1:swp8 -> webserver1:eth1;
}
```

```
cumulus@S1:~# ptmctl
       Status Expected Nbr
                                    Observed Nbr
                                                          Last Updated
Port
              S2:swp1
                                    S2:swp1
                                                          17m: 2s
swp1
       pass
              S2:swp2
                                    S2:swp2
                                                          17m: 2s
swp2
       pass
                                    procurve1.lab:21
                                                          17m: 10s
swp3
              procurve1.lab:21
       pass
                                    procurve1.lab:22
              procurve1.lab:22
                                                          17m: 10s
swp4
       pass
              cisco1.lab:GigabitEthernet0/1 cisco1lab:GigabitEthernet0/1
swp5
       pass
              jmx480.lab:xe-0/0/0
                                     jmx480.lab:xe-0/0/0
                                                            17m: 1s
swp6
       pass
swp7
              webserver1:eth0
                                    webserver1:eth0
                                                          17m: 3s
       pass
              webserver1:eth1
                                    webserver1:eth1
                                                          17m: 3s
swp8
       pass
```

What are we missing?

Hardware acceleration of the networking forwarding path

One way of hardware accelerating

cumulus networks

Thank you!

nat@cumulusnetworks.com | @natmorris

