
DITL CRUNCHING FOR GTLD
NAME COLLISION STUDY

Jim Reid
RTFM LLP/Interisle LLC

INTRODUCTION
•Why, When & How?

• Hardware choices

• Software choices & trade-offs

• Problems

• Results/Findings

• Possible next steps

OBJECTIVES FOR DNS
ELEMENT OF THE STUDY

• Count how often new gTLDs appear in root server traffic

• How does this compare to traffic for existing TLDs?

• Are these requests localised or diffuse?

• True resolving servers or from forwarders/stubs?

• How often do new gTLD labels appear elsewhere in QNAMEs?

•Where do they appear?

• For bonus points, look at big resolver operators’ traffic

DATA SOURCE
•DITL traffic for root servers held at DNS-OARC

• Roughly 7TB of compressed pcaps in ~500,000 files

• 5.2 TB for 2012 (~55B requests)

• 1.7 TB for 2013 (~39B requests)

• Just reading 1TB of data at 20MB/s takes ~14 hours

• TLD counts for 2013 DITL traffic is 3.5GB

INITIAL SCOPING
• Helpful advice and software from Netnod

• Got access to elderly box, an1.dns-oarc.net

•Did some prototyping with packetq

• Some nasty shocks:

• ~1000 new gTLDs found in a sample of the DITL pcaps

• 1 pass over the 6TB of DITL pcaps for 2012 would take at
least 2 weeks on this system: far too long

• Had to make 2 passes over both 2012 and 2013 datasets

CAIDA TO THE RESCUE
• Lot of uncertainty over what other hardware could be provided:

• Could anything be ordered, delivered and set up in time?

•Maybe NFS mount the datasets into the cloud somewhere?

• Throw a bazillion CPUs at the problem

• Found out CAIDA had a server which could be made available

• 8-core 2GHz Xeon, 7TB of scratch disk space

• Running 5-6yo version of FreeBSD

• I pass over a year’s DITL data would take less than a week

SOFTWARE CHOICES - 1
• Got a custom version of packetq from Netnod

• SQL-like language for crunching through pcap files

•Mostly counted things: QTYPEs, QNAMEs, source addresses

• Special hooks to recognise existing and proposed TLDs

• Could drive all cores flat-out simultaneously

•Not so good for label position counting/checking though

• 1 week of CPU time for each N-th level label to inspect

SOFTWARE CHOICES - 2

• Use tcpdump & fgrep for a second pass over the pcaps

• Generated text files containing pretty-printed DNS requests
where any label matched a proposed gTLD

• “Only” several GB of text files to then analyse

• awk-based scripts chugged through these text files to do
label position and source address prefix counts

• Sometimes tripped over bad input data because of
malformed (-ish) queries, e.g. foo.bar.tld .

GENERAL APPROACH
• Split the ~250,000 pcap files for each year into 8 equal chunks

• Run script over each pcap as an “atomic” operation

• Generate unique output files for each input file

•Merge or aggregate these interim files later

• Could process files by hand if bugs/corner cases pop up

•No locking/synchronisation issues

• Just keep crunching, never stop or go back

• Flag errors as corner cases, but don’t allow these to get in
the way or complicate the scripting

TRIPLE DATA DISTILLATION

• 1: reduce terabytes of raw data to O(gigabytes) of rough results

• 2: distill rough results to O(megabytes) of refined results

• 3: feed refined results into spreadsheets and PHP-based tools for
statistical analysis

• Summary results analysed in more detail by Interisle

• Some sampling done too

• Interisle drew graphs and compiled tables for final report

WHY NO DATABASE?
• Couldn’t realistically prototype/calibrate this in time

• Far too many unknowns

• How big would the database(s) be?

•What’s the optimal size of the tables and indexes?

• How long would it take to populate the database(s)?

• Locking/synchronisation with 8 CPUs in parallel

• How long would SQL queries take to run?

•What if the database got corrupted or a scratch disk died?

WHY TCPDUMP?
• It’ll be faster than perl or python or...

•Newest DNS tools need newer perl/python/whatever
versions than the CAIDA box had

• Too many unknowns - install/software configuration hell

•Needed certainty when results could be expected

•Needed to capture several things about requests of interest

•QNAME, source address, flags bits & opcode

• Get these in just one pass over the pcaps with tcpdump

HOW THE CRUNCHING
 GOT DONE

• 2 passes over both 2012 and 2013 DITL RSO pcaps

• First pass counted TLDs using packetq

• Took about 2 CPU-months (1 week of elapsed time)

• Second pass got tcpdump to pretty-print packets where
QNAME contained a new gTLD label

• Took nearly 2 CPU-months

• awk scripts took about 1 CPU-week to analyse label
positions, count source address prefixes

AN UGLY GOTCHA
• Some packetq output from 2013 data was wrong:

• Essentially null files were produced

•Duane Wessels explained some raw pcaps had used 802.1q
VLAN tagging

• Hadn’t been tidied up at OARC at that point

• packetq treated 802.1q link-level header as payload

• An off by 4 bytes error...

• Henrik Levkowetz at Netnod fixed this very quickly :-)

FINDINGS - 1
• Lots of power-law distributions

• Small numbers of TLDs and source addresses (per TLD)
accounted for most of the traffic

• FAR more traffic for proposed TLDs than gut feel suggested

• Almost all new gTLDs were seen

• Traffic for .home and .corp was particularly high

• Pretty much none of that DNS traffic was localised (enough)

• Some interesting/unexplained traffic patterns

FINDINGS - 2
• Very, very, very long tail

• Several billion 10-character TLDs seen exactly once

• Looks to be NXDOMAIN detection/mitigation by chrome

• Ran out of time to look at flag bits and opcodes

• Sampling didn’t find lots of non-query opcodes

• Unsure of the share of queries from proper resolvers and
stub resolvers or forwarding-only boxes

FOR FURTHER ANALYSIS?
• Probable leakage from Active Directory and Bonjour

• How will those end systems behave if/when NXDOMAIN
becomes a referral response?

• Some dynamic updates too....

• Lookups for MX and SRV records

• Can’t be coming from naive end users & applications

• Something’s been deliberately (mis)configured to look for
these: what? why?

• Should be looked at in more detail

LESSONS LEARNED
• The old tools from the 80s should not be overlooked

• They can still do useful stuff

• Fewer unknowns & dependencies, especially on an old OS

• Use simple tools that do just one thing and do them well

• Generally better than the Swiss army penknife approach that
perl/python/whatever seem to typify

• Always remember Ken Thompson’s advice: “when in doubt,
use brute force”

ACKNOWLEDGEMENTS
AND THANKS

• kc claffy and Daniel Anderson at CAIDA

• Simply couldn’t have done the work at that time without
access to their hardware

• Box died shortly after the crunching stopped...

• Henrik Levkowetz at Netnod

• For tweaking and supporting packetq

• Also did some sanity checking of early results

•OARC, especially William Sotomayor, for logistical support

QUESTIONS?

