

SPAMTRACER TRACKING FLY-BY SPAMMERS

RIPE 67

PIERRE-ANTOINE VERVIER

SYMANTEC RESEARCH LABS

Pierre-Antoine_Vervier@symantec.com

Where It All Begins

CONJECTURE

- Spammers would use BGP hijacking to send spam from the stolen IP space and remain untraceable
- Short-lived (< 1 day) routes to unused IP space + spam [Ramachandran2006, Hu2007]
- Anecdotal reports on mailing lists

POTENTIAL EFFECTS

- Misattribute attacks launched from hijacked networks due to hijackers stealing IP identity
- Spam filters heavily rely on IP reputation as a first layer of defense

Fly-By Spammers :: Myth or Reality?

BGP Hijacking

- CAUSE
 - The injection of erroneous routing information into BGP
 - No widely deployed security mechanism yet
 - E.g., ROA, BGPsec
- EFFECTS
 - Blackhole or MITM [Pilosof 2008] of the victim network
- EXPLANATIONS
 - Router misconfiguration, operational fault
 - E.g., Hijack of part of Youtube network by Pakistan Telecom
 - Malicious intent?

Your Mission, Should You Accept It

 Validate or invalidate on a large scale the conjecture about fly-by spammers

Assess the prevalence of this phenomenon

SPAMTRACER

- collect routing information about spam networks
- extract abnormal routing behaviors to detect possible
 BGP hijacks

SPAMTRACER:: Presentation

ASSUMPTION

 When an IP address block is hijacked for stealthy spamming, a routing change will be observed when the block is released by the spammer to remain stealthy

METHOD

- Collect BGP routes and IP/AS traceroutes to spamming networks just after spam is received and during several days
- Look for a routing change from the hijacked state to the normal state of the network

SPAMTRACER:: System Architecture

29 hijacked prefixes from Jan. to Jul. 2013

Hijack duration between 1 and 20 days

Fly-By Spammers :: Hijack Signature

- Hijacked networks
 - were dormant address blocks, i.e., by the time the networks were hijacked they had been left idle by their owner
 - advertised for a short period of time
 - advertised from an apparently legitimate origin AS but via a rogue upstream AS
 - see [Huston2005]
- In practice, we observed
 - idle intervals between 3 months and 7 years
 - hijack durations between 1 day and 20 days, mostly < 5 days
 - rogue upstream ASes were hijacked too

Case Studies :: Suspicious BGP Routes & Spam

Case Studies :: Suspicious BGP Routes & Spam

- Strong temporal correlation between
 - suspicious BGP announcements and
 - spam
- BGP announcements are quite short-lived!
- No identified spam bot!
- A lot of scam web sites advertised in spam mails were hosted in the hijacked networks

Case Studies :: Suspicious BGP Routes & DNSBLs

 Only 2 address blocks appeared in the Uceprotect* blacklist at the time of the suspicious BGP announcements

How Stealthy Were Spammers?

- Out of 29 hijacked address blocks
 - 6 (21%) were listed in Uceprotect
 - 13 (45%) were listed in Spamhaus DROP (Don't Route Or Peer)
 - DROP is supposed to list hijacked address blocks
 - but little is known about their listing policy
 - 29 (100%) were observed only once during the time period of the experiment
- Fly-by spammers seem to manage to remain under the radar!

Which Networks Were Targeted?

- All hijacked address blocks were assigned to a different organization (i.e., a different owner)
- Out of 29 organizations
 - 12 (41%) were found to be dissolved or very likely out of business
 - 17 (59%) were found to be still in business or no conclusive evidence of them being out of business could be found
- Fly-by spammers seem to simply target dormant address blocks regardless of their owner still being business or not

What About Long-Lived Hijacks?

- We looked specifically for short-lived hijacks
 - each spam network was monitored for 1 week after spam was received
- But what about long-lived ones
 - it happens also, e.g., LinkTelecom hijack [Nanog2011, ISTR2012, Vervier2013, Schlamp2013] lasted 5 months
 - but they are less straightforward to detect
 - and it seems to defeat the assumed purpose of evading blacklisting
- We are working on updating our framework to detect these cases

How To Prevent Fly-By Spammers?

- In the observed hijack cases, spammers
 - did **not** tamper with the origin of the address blocks
 - but advertised the address blocks via rogue upstream ASes
- BGPsec is currently the most promising architecture for securing BGP
 - both Route Origination and Route Propagation must be secured to prevent fly-by spammers
 - secured Route Origination via ROAs is being more and more deployed
 - but secured Route Propagation is still at a too early stage
- The solution for now is thus to
 - encourage the following of routing best practices and
 - use detection systems to mitigate the effect of these attacks, e.g., by feeding IP-based reputation systems with hijacked address blocks

Conclusion

- The observed fly-by spammer cases show that this phenomenon is happening though it does not currently seem to be a very prevalent technique to send spam, e.g., compared to botnets
- However, it is important to detect those attacks because hijacking address blocks hinder traceability of attackers and can lead to misattributing attacks when responding with possibly legal actions!

Perspectives

 Provide an interface for network operators to query identified hijacks

 Ongoing collaboration with Institut Eurécom (FRA) and TU München (GER) to build a comprehensive system for the detection and investigation of malicious BGP hijacks

Thank you!

Time for Q&A!

Some references

[Ramachandran 2006] A. Ramachandran and N. Feamster. Understanding the network-level behavior of spammers. In SIGCOMM '06: Proceedings of the 2006 conference on Applications, technologies, architectures, and protocols for computer communications, pages 291-302, 2006.

[Hu 2007] X. Hu and Z. M. Mao. Accurate Real-Time Identification of IP Prefix Hijacking. In Proceedings of the 2007 IEEE Symposium on Security and Privacy (S&P), pages 3-17, 2007.

[Pilosov 2008] A. Pilosov and T. Kapela. Stealing the Internet: An Internet-Scale Man In The Middle Attack. Defcon 16, Las Vegas, NV, August 2008.

[Huston 2005] G. Huston. Auto-Detecting Hijacked Prefixes? RIPE 50, May 2005.

[Nanog 2011] Prefix hijacking by Michael Lindsay via Internap, http://mailman.nanog.org/pipermail/nanog/2011-August/039381.html, August 2011.

[ISTR 2012] Symantec Internet Security Threat Report: Future Spam Trends: BGP Hijacking. Case Study - Beware of "Fly-by Spammers". http://www.symantec.com/threatreport/, April 2012.

[Vervier 2013] P.-A. Vervier and O. Thonnard. Spamtracer: How Stealthy Are Spammers? In the 5th IEEE International Traffic Monitoring and Analysis Workshop (TMA), pages 453-458, 2013.

[Schlamp 2013] J. Schlamp, G. Carle, and E. W. Biersack. A Forensic Case Study on AS Hijacking: The Attacker's Perspective. ACM Computer Communication Review (CCR), pages 5-12, 2013.